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Abstract—This paper presents an effective generic approach for approaches are suggested to achieve a multidimensional ap-
computer-aided design of microwave circuits. We extend the one- proach: a recursive 1-D application of the standard Cauchy
dimensional Cauchy method for frequency-response interpolation method and multidimensional rational-function expansion.

to a multidimensional Cauchy interpolation, with respect to both The C h thod all licati f adaoti
frequency and physical dimensions. This paper also demonstrates e Lauchy method allows an easy applicaton or adapuve

the feasibility of applying adaptive sampling to the multidimen- Sampling [9]. Adaptive sampling concentrates the computation
sional rational-function expansion. Three examples, including of samples in regions with highly nonlinear behavior. As a

optimization and Monte Carlo analysis, have been given to verify result, samples are taken only in sections where they give

the validity of the proposed approach. additional information, so that this technique reduces the
Index Terms—Adaptive sampling, CAD, Cauchy method, in- required number of samples even further.
terpolation, parameter extraction. The algorithm for adaptive sampling can be applied to

our multidimensional rational-function expansion. Thus, only
those samples containing additional information for the inter-

polation process are taken. When using the recursive Cauchy

A NUMBER OF software packages are now commercialiy,oihoq  however, adaptive sampling is restricted to one pa-
available for electromagnetic (EM) simulation of Mi-nater as the samples must fall on a fixed grid.
crowave circuits. These packages provide reasonably accurate

results allowing designs to be implemented in a cost-effective
way. These packages, however, are typically very computa- II. 1-D CAUCHY METHOD

tion intensive. It has been well recognized that the centrala closer look at system transfer functions, e.g., return and
processing unit (CPU) time and memory space required j{xertion loss, tells us that most of these functions can be repre-
s!mulate a fully integrated m|crowa\./¢.C|rcuns, using these ENbnted by a rational polynomial. Consequently, using rational
simulators, far exceed the capabilities of today’s computgplynomials as interpolation functions yields a much closer
workstations. _ representation of the systems response than other schemes,
Over the past years, there has been a strong interest amgny. splines.
researchers to circumvent this problem using neural networksrpe system is described in the form of a fractional polyno-
[1], space mapping [2], and parameter extraction [3]. The Ugga| function of numerator ordeN and denominator orded

of the Cauchy method has been also proposed in [4] and [R}y one parameter, most often the frequencipy
The Cauchy method vyields a surprisingly accurate match of

I. INTRODUCTION

the computed points between (interpolated) and even exterior N
(extrapolated) to the sampled points with the exact solution. ) ao + Z anf
Most of the papers published on application of the Cauchy g gy _ %0+ auf +axf"+--- n=1 (1)
method, however, deal with one-dimensional (1-D) interpola- L+bif +baf?+ - D
tion, namely frequency-response interpolation. In this paper, 1+ Zbdfd
d=1

we extend the 1-D interpolation for frequency-response inter-

polation to multidimensional Cauchy interpolation with respect In order to determine a function in the form of (1), a number
to both frequency and geometrical dimensions. Two diﬁereBF k= N+D 11 arbitrary sampling points are,required
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Simulated the frequency with the biggest mismatch. At this point, the

[ — o p—
£y SED=R, \ next sample is taken and the procedure is repeated until both
R 5 models agree.
Simulated / \
fy > S(f2)=R, \ R m\ [1l. M ULTIDIMENSIONAL CAUCHY METHOD
RB/ R o The rational-function interpolation can be extended to the
 Simulate i / \ / interpolation of multidimensional functions. Two new ap-
ty > S(f3)=R; W R proaches are shown here: a multidimensional recursive Cauchy
R 34/ method and a multidimensional rational-function expansion.
Simulated / .
f,— S(f)=R, A. Recursive Cauchy Method
Fig. 1. Tableau for Burlisch-Stoer algorithm. The recursive method solves the multidimensional interpola-

tion using a recursive algorithm. The algorithm itself performs

Burlisch—Stoer algorithm does not require the inversion of%l_D Cauchy interpolation as described in Section Il. From a
matrix. The algorithm is outlined as follows given set7{ of y sample points and an arbitrary popt, the

Let R, be the value atf; of the unique rational algorithmC calculates the interpolated function valsig(p*).

. . . The setH is put together by the pairs of sampling points
function of degree zero (i.e., a constant) passing through. = ! . ) 5
the point (fi, S(f1)). Likewise, define Ry, Rs, ---. Ry. 8 to p” and their function value$’ to S”. Thus, X can be

. ; written as
Now let R;» be the rational polynomial of degree one

passing through botlif;, S(f1)) and (f2, S(f2)). Likewise H={W, ), @, S @" "), -, @, S} @)
Ras, Ras, -+, Ru—1)(x)- Similarly, for higher order poly-
nomials up toRi»3..x, Which is the value of the unique The algorithmC can be defined as a functi€®{(, p*), which

interpolating polynomial through akt points, i.e., the desired yields the interpolated responsé for p* using the sample®
answer. The variou®&’s form a tableau with ancestors on the

left leading to a single descendant at the extreme right. FeXp”, H) = [(p*, {(¥’, S'), (0", S7), (v, §"), ---,
example, withk = 4, the tableau is as shown in Fig. 1. (™, SM}) — S*]. 4
The Burlisch—Stoer algorithm is a recurrent way of filling
in the numbers in the tableau one column at a time. It is basedJsing these definitions, the algorithm can now be extended
on the relationship between a child and its parents by [8] to multidimensional interpolation. For this purpose, the set of
sample points must be extended from the 1-D sample point

Ri(ig1)-(i4m) = B(it1)-(i4m) set’H to a multidimensional sample-point array.
n Bty +m) — Bi(ipm—1) 1) Choice of Sample Points in Parameter Spaddte sam-
=1 < _ Riigy1)igm) — Bivigm—1) ) 1 ple points in ann-dimensional parameter space are now
f— fiem Riit1)-Gitm) — Rig1)(itm—1) represented by vectofs= (p1, p2, -- -, pn). For the recursive

) algorithm, the set of sample point%, S) must fall on a
completely filled grid of points. The grid does not have to be
It produces the so-called diagonal rational function, with thequidistant. An example of sample locations in the parameter
degree of the numerator and denominator equat ( odd) space are shown in Fig. 3 for two and three parameters.

or with the degree of the denominator larger by onek(is  Each dimension has its own subset of parameter values, as
even). For the derivation of the algorithm, refer to Stoer angéen from Fig. 3, which do not change for different values of
Burlisch [7]. the other parameter dimensions. In the example given, the set

To demonstrate the efficiency of the 1-D Cauchy methogf samples in thep;-dimension has just the four parameter
the results of different interpolation schemes (linear, splingaluesy’ to p/”.
and Cauchy) are shown in Fig. 2. The response of a four-pole2) Algorithm Implementation:The goal is to interpolate
narrow-band planar filter has been sampled at 20 frequengg function valueS* of an arbitrary located poinf™ =

points only. The linear interpolation does not yield mucbpi P4, -+, p). The algorithm can be divided into the fol-
information about the behavior of the circuits response. Thwing three steps.

spline interpolation provides better correlation due to the Step 1) The root process starts with interpolating the point

smooth curve fitting; however, the curve does not match with p* with constanip, = p3, ps = p5, etc., parallel to

the exact solution. The Cauchy method, on the other hand, the p;-axes, shown as a dashed line in Fig. 4(a).

shows the exact response, even though sampled at a few points This is a 1-D interpolation, so the algorithi

only. , _ defined in (4) can be used. This step yields the
Dhaeneet al. [9] showed that an adaptive sampling scheme desired interpolated point

can be applied in order to reduce the number of sampling

points to the minimum. First, a few samples are taken. Using S* =C([pt, p5, -, A (5)

these samples, two different rational polynomial approxima-

tions are computed. These two models are then scanned for where A is the set of sampling points fgf, to p}”
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Fig. 3. Sample locations for two- and three-dimensional parameter space.

andp; = pa, -+

= const. These are the points

marked withe in Fig. 4. They may not fall on the
grid of known sample points. If that is the case, the
algorithm proceeds to Step 2 in order to determine
the pointse. Otherwise (the points are known), the

algorithm proceeds with Step 3.

Step 2) The algorithm calls itself for each of the unknown
pointse. In the example, the algorithm starts four
new child processes

C((p}, p5), B1)

C((pY', p3), Bs)

C((p?, p5), B2)

C((p!", p3), Ba) (6)
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Fig. 5. Inverted tree representation for recursive Cauchy method.

AT £ O 1 I

as shown in Fig. 4(b). Th&'s are sets of sample using C and hands it back to the parent process,

points with a fixed value forp;, as seen from which requested that point.
Fig. 4. The interpolation is now performed alongrinally, the answer for the root process (5) will be found.
thepo-axis. The routine called is exactly the routine The iterations of the algorithm can be represented in an
already used in Step 1. The algorithm is thumerted tree diagram (see Fig. 5). Each proc€Xgt, p*)
recursive Again, each subprocess checks if the segquests the unknown sample points in its dimension from
B is from known samples. If not, the algorithma number of child processes and hands the result of its
starts another instance of subprocesses in orderitterpolation to its parent. The tree is terminated (“leaves”)
interpolate the points included ifi using the next with processes that interpolate from known sample points.
higher dimension. In the example, this wouldie Adaptive sampling can only be applied in the last dimension
Step 3) In case the subprocess determines that all samifiee leaves), as all other samples must fall on the grid. This is
points are known, it calculates the interpolated poimtot a major limitation because most parameters show a slow



2368 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 12, DECEMBER 1998

variation and the most nonlinear parameter can be chosen last. 200
As mentioned before, the 1-D rational function of (1) can \‘\ S
- . . . RS
also be expanded to a multidimensional rational function, ) 150 AR =
; ; ; ; ; o S
thus extending the adaptive sampling to more dimensions. An N 100 =
outline of the multidimensional rational-function interpolation 50 -
is given in Section II-B. =
;
B. Multidimensional Rational-Function Expansion .s°'9
Ly . . 0.6
The multidimensional method can also be implemented by " °"‘0'5w/h
. .. . . . . ~ 0.3
a single multidimensional rational polynomial in the form Sample points 0.2

T

Poum(p1,p2, 03, )
S .. — fnum y P2, P3,
(p17 P2, P3, ) Pden(p17p27p37 . )

where Poum (p1, p2, p3, ---) and Puen(p1, p2, p3, ---) are ar-

bitrary polynomials of the parameters in the numerator and

denominatorp; to p,, respectively. Using this approach, the

coefficients of (7) are determined directly. Sakata [10] showed

the extension into two dimension, and the general scheme is psl
discussed shortly here. Equation (7) can be written as

(7) Fig. 6. Impedance of microstrip line as a function &f and w/h using
multidimensional rational-function expansion.

e

2

N
ao + Z aj‘Pj(plaPQa e apn)
j=1 (8) Fig. 7. Microstrip antenna with recessed line feed.

S(pla D2, P3, ) =

D
1+ 0;Pi(p1,p2, -+ 1) 0 - - : - —
i=1 1
whereP;(p1, p2, - - -, pn) are the mixed terms of the existing 2|
parameters. The general form of the mixed term elements isz |
; P 4 4 EM-Simulation
e Q .
P =1 »"Y © 7 4 — Multi-D Cauchy
i=0 a
2 of
wherew(j) is an integer function of. -8
Much attention has to be paid to the choice of the functions I
u(4). In this paper, the way used is to get all mixed terms of all " at
parametergy, ---, p, Up to a specified maximum power and , . . , ,
then sort by power sums,, = » .., u;. Starting with the 3.6 3.7 3.8 3.9 4 4.1 42
lowest power sum, the polynomial is built. Using this scheme, I |GHZ]
the start of the polynomial for two dimensions is Fig. 8. Return loss of antenna geomefry = 24.5 mm, p» = 1.4 mm,
9 9 ps = 4.2 mm, computed by a multidimensional Cauchy method model and
P(p1, p2) = ag + a1p1 + asps + agpipe + aspi + asps full EM simulation.
+agpip2 + . (10)
This approach yields a linear equation system. Solving this IV. EXAMPLES

system directly determines the coefficients of (8) and, hence,Three examples are given here to demonstrate the inter-

a closed-formand differentiable equation of the system’s polation using the multidimensional Cauchy method. All EM

responseS(p1, pz, ps, * - *). simulations are performed using the Soneet planar EM
However, it should be mentioned that for large dimensionablver. All central processing unit (CPU) times given refer to

problems, it would be more efficient to split the problencomputations on a Hewlett-Packard K-class machine.

into several problems of lower order, which are then solved

recursively, as shown in Section IlI-A. A. Microstrip Line Impedance

The multidimensional rational-function expansion is demon-
strated by modeling the line impedance of a microstrip line,
The multidimensional rational-function expansion may utiwith respect to the line’s width-to-height ratie/h and the
lize adaptive sampling. To do so, the function is approximatedlative dielectric constant. of the substrate.
with to different integer functions.; (5) anduz(j). Using the The modeling algorithm described in Section IlI-B returns
functions in (9) results in two different approximatiorts:(7) a closed-form rational function o¥(e,., w/h).
and S»(p). The next sample is taken at the point of biggest The samples are determined by the adaptive sampling tech-
mismatch of the approximations, (¢) and Sz (p). nique described above. Fig. 6 shows the model approximation

C. Adaptive Sampling
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Fig. 9. Effect of inset location on antenna’s return loss.

and the 19 adaptively taken samples. The model provides an
accuracy within 0.1% error.

S‘d %d Ed
i W B

Heuristic models of microwave circuits are restricted tgjg. 10. Layout of three-pole filter showing parametgrs—p. .
very basic topologies such as lines, gaps, step, etc. The
multidimensional Cauchy method allows the creation of fast . : -
and accurate models fo): any kind of topology as long as al) Parameter Plot of Feed Locationsing the multidi-
parameterized EM simulation is feasible. Here, the buildir@é:".ns!onaI Caug:h_y method model, the antenna has been
of a generic model for an recessed-line-fed microstrip anten fimized for .m|n|mal return loss at.4 GHz. The effects of
in C-band on a 10 mil-Rogers RT/duroid 5870 substrate (Sgn‘ee feed location on the return loss is shown by a parameter
Fig. 7) is discussed. An accurate model for such an elem t of the r?t“”‘_ loss. . . .
does not exist and, up to now, the design is based on simplified he plots in Fig. 9 contain the iniormation of 2000 fre-

cavity models [12] or an expensive search by a vast num ency points. Obtaining the same |nf.ormat|or1. using EM
EM simulations, which must be repeated whenever a n mulators, one has to perform a simulation requiring 33 CPU
slightly modified design is requested . The discussed model computes the same information in less

The multidimensional Cauchy method overcomes thegéan 4 CPU s. It can be clearly seen that the established model

problems. All expensive EM simulations for the microstriﬁnables the designer to investigate the circuits performance

antenna are computed all at once. The problem has falmh respect to dimension changes without any additional

dimensions: the parametefs to ps and the frequencyf. expensive calculation.

Five parameter values per dimension are required. Hence, the )

responses ob* = 625 samples have to be computed for & Narrow-Band Three-Pole Filter

complete filled grid of sample points. This data-acquisition In this example, theS-parameters of the response of a
phase requires approximately 10 h of CPU time. Even thoughlanar superconductive microstrip filter, as shown in Fig. 10,
this initial effort is quite high, it pays off as the establishedre interpolated. The five parameters are the four geometrical
model can be used for a large variety of antenna layoytarameters, namely, the gap and resonator lengths and the fre-

B. Recessed-Line-Fed Microstrip Antenna

without any additional expensive computations. guency. A sample grid with five sample points per dimension
The simulated geometries fall on the following grid: for the geometrical parameter is used.
Due to the underlying EM-simulation software, the pa-
p1 =17.5 mm,20.3 mm, 23.1 mm, 25.9 mm, 28.7 mm rameter values are forced to lie on a 1.75-mil grid. The
p2 = 0.0 mm, 2.8 mm, 5.6 mm, 8.4 mm, 11.2 mm frequency dependency is determined by adaptive sampling,

. as the last level of the recursive algorithm. The frequency is
ps =2.8 mm,5.6 mm,8.4 mm, 11.2 mm, 14 mm chosen because, by far, it shows the largest variation of the
f =3.4 GHz,3.7 GHz,4.0 GHz,4.3 GHz,4.6 GHz S-parameter.
Fig. 11 shows the interpolated response in comparison with
The frequency response for the model is verified at dhe exact solution, obtained by a finer meshing and finer fre-
unsampled arbitrary geometry withy = 24.5 mm, po = quency stepping. A very good agreement is observed between
1.4 mm, andps = 4.2 mm. The response computed by fulthe interpolated response and exact solution.
EM simulation and by the model is shown in Fig. 8. As seen, The response where the multidimensional Cauchy method
the model is in very good agreement with the EM simulatdd not applied is shown in Fig. 12. Due to the restrictions that
result. all geometrical values have to fall on the 1.75-mil grid, the pa-
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yFig. 13. Response of optimized three-pole filter.
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Fig. 12. S1; parameter without using the multidimensional Cauchy method,
as in Fig. 10, showing the sampled points above and below.

the predefined model. In Fig. 14, a random variationt©f. 1

, . . mil is added to all geometrical parameters.
rameter values must be snapped to the next grid point. Fig. 10 either optimization nor Monte Carlo analysis can be

shows the response for both rounded-up and rounded-dowformed involving direct EM simulation. The number of

values_for _the parameters—p,. In addition, the frgquency required points exceeds even the capabilities of current multi-
resolution is lost, as only the sampled frequencies can Bg,cessor computers. Moreover, the majority of planar EM
shown. As a result, the two-ripple filter response degradesdgy ers are not capable of handling geometries with small
a meanlqglgss_ polygon. N variations, as all vertices must fall on a relatively rough grid.
1) Optimization, Monte Carlo Analysissing the model, g myitidimensional Cauchy method model overcomes these
the f_|IFer _has been optimized with respect to the fOHOW'nEroblems. After one expensive generation of an on-grid data-
specifications: base, all following computations of arbitrary circuits variations

S11 <—20 dB for 3.9 < f < 3.95 can be obtained by the inexpensive recursive algorithm.

So1 < —20 dB for f = 3.85 GHz andf = 4.00 GHz V. CONCLUSION

The optimization by gradient search requires 19 iterations,In the past, many publications showed the remarkable
which corresponds to 1140 function calls. A full EM simureduction of computational cost when the Cauchy method
lation would require at least a CPU time of several days, asd adaptive sampling is applied to the frequency-response
the circuit’'s response has to be repeatedly computed on a vietgrpolation.

fine grid. The multidimensional Cauchy Method solves the This paper has shown that the method can be extended to
problem within 3 CPU min. The response of the optimizethe application on multidimensional problems. This can either
filter is shown in Fig. 13. be done by recursive application of the Cauchy method or by

Having the model on hand, the designer can check tha all-in-one multidimensional rational polynomial approach.

sensitivity of the model by a Monte Carlo analysis. Again, In doing so, similar savings of computational expenses for
the analysis—known to be expensive or not feasible whemultidimensional problems can be achieved, as for the 1-D
EM simulation is used—can be applied with little effort usingase. In this paper's examples, the authors have shown that a
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complete and accurate numerical model of a three-pole filt~~
with four geometrical parameters plus frequency depender
can be obtained.

It has also been demonstrated that the developed moc
can be implemented in an optimization loop for a fast opt
mization of microwave circuits. Moreover, the authors hav
shown that the model can be utilized for an inexpensi
generation of parameter plots and Monte Carlo analysis w

A

the accuracy of a full EM simulation. An example has alsgg pevelopment Dep
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