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Abstract—This paper presents an effective generic approach for
computer-aided design of microwave circuits. We extend the one-
dimensional Cauchy method for frequency-response interpolation
to a multidimensional Cauchy interpolation, with respect to both
frequency and physical dimensions. This paper also demonstrates
the feasibility of applying adaptive sampling to the multidimen-
sional rational-function expansion. Three examples, including
optimization and Monte Carlo analysis, have been given to verify
the validity of the proposed approach.

Index Terms—Adaptive sampling, CAD, Cauchy method, in-
terpolation, parameter extraction.

I. INTRODUCTION

A NUMBER OF software packages are now commercially
available for electromagnetic (EM) simulation of mi-

crowave circuits. These packages provide reasonably accurate
results allowing designs to be implemented in a cost-effective
way. These packages, however, are typically very computa-
tion intensive. It has been well recognized that the central
processing unit (CPU) time and memory space required to
simulate a fully integrated microwave circuits, using these EM
simulators, far exceed the capabilities of today’s computer
workstations.

Over the past years, there has been a strong interest among
researchers to circumvent this problem using neural networks
[1], space mapping [2], and parameter extraction [3]. The use
of the Cauchy method has been also proposed in [4] and [5].
The Cauchy method yields a surprisingly accurate match of
the computed points between (interpolated) and even exterior
(extrapolated) to the sampled points with the exact solution.

Most of the papers published on application of the Cauchy
method, however, deal with one-dimensional (1-D) interpola-
tion, namely frequency-response interpolation. In this paper,
we extend the 1-D interpolation for frequency-response inter-
polation to multidimensional Cauchy interpolation with respect
to both frequency and geometrical dimensions. Two different
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approaches are suggested to achieve a multidimensional ap-
proach: a recursive 1-D application of the standard Cauchy
method and multidimensional rational-function expansion.

The Cauchy method allows an easy application of adaptive
sampling [9]. Adaptive sampling concentrates the computation
of samples in regions with highly nonlinear behavior. As a
result, samples are taken only in sections where they give
additional information, so that this technique reduces the
required number of samples even further.

The algorithm for adaptive sampling can be applied to
our multidimensional rational-function expansion. Thus, only
those samples containing additional information for the inter-
polation process are taken. When using the recursive Cauchy
method, however, adaptive sampling is restricted to one pa-
rameter as the samples must fall on a fixed grid.

II. 1-D CAUCHY METHOD

A closer look at system transfer functions, e.g., return and
insertion loss, tells us that most of these functions can be repre-
sented by a rational polynomial. Consequently, using rational
polynomials as interpolation functions yields a much closer
representation of the systems response than other schemes,
e.g., splines.

The system is described in the form of a fractional polyno-
mial function of numerator order and denominator order
for one parameter, most often the frequencyby

(1)

In order to determine a function in the form of (1), a number
of arbitrary sampling points are required.
This interpolation scheme is called the Cauchy method or
rational-function interpolation.

When using sample points, a system of linear
equations can be set up, whose solution yields the values for
the coefficients and .

Another faster and more stable algorithm was reported by
Stoer and Burlisch [7] of the Neville-type, which performs the
interpolation on tabulated data in a recurrence manner. The
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Fig. 1. Tableau for Burlisch–Stoer algorithm.

Burlisch–Stoer algorithm does not require the inversion of a
matrix. The algorithm is outlined as follows.

Let be the value at of the unique rational
function of degree zero (i.e., a constant) passing through
the point . Likewise, define .
Now let be the rational polynomial of degree one
passing through both and . Likewise

. Similarly, for higher order poly-
nomials up to , which is the value of the unique
interpolating polynomial through all points, i.e., the desired
answer. The various ’s form a tableau with ancestors on the
left leading to a single descendant at the extreme right. For
example, with , the tableau is as shown in Fig. 1.

The Burlisch–Stoer algorithm is a recurrent way of filling
in the numbers in the tableau one column at a time. It is based
on the relationship between a child and its parents by [8]

(2)

It produces the so-called diagonal rational function, with the
degree of the numerator and denominator equal (ifis odd)
or with the degree of the denominator larger by one (ifis
even). For the derivation of the algorithm, refer to Stoer and
Burlisch [7].

To demonstrate the efficiency of the 1-D Cauchy method,
the results of different interpolation schemes (linear, spline,
and Cauchy) are shown in Fig. 2. The response of a four-pole
narrow-band planar filter has been sampled at 20 frequency
points only. The linear interpolation does not yield much
information about the behavior of the circuits response. The
spline interpolation provides better correlation due to the
smooth curve fitting; however, the curve does not match with
the exact solution. The Cauchy method, on the other hand,
shows the exact response, even though sampled at a few points
only.

Dhaeneet al. [9] showed that an adaptive sampling scheme
can be applied in order to reduce the number of sampling
points to the minimum. First, a few samples are taken. Using
these samples, two different rational polynomial approxima-
tions are computed. These two models are then scanned for

the frequency with the biggest mismatch. At this point, the
next sample is taken and the procedure is repeated until both
models agree.

III. M ULTIDIMENSIONAL CAUCHY METHOD

The rational-function interpolation can be extended to the
interpolation of multidimensional functions. Two new ap-
proaches are shown here: a multidimensional recursive Cauchy
method and a multidimensional rational-function expansion.

A. Recursive Cauchy Method

The recursive method solves the multidimensional interpola-
tion using a recursive algorithm. The algorithm itself performs
a 1-D Cauchy interpolation as described in Section II. From a
given set of sample points and an arbitrary point, the
algorithm calculates the interpolated function value .

The set is put together by the pairs of sampling points
to and their function values to . Thus, can be

written as

(3)

The algorithm can be defined as a function , which
yields the interpolated response for using the samples

(4)

Using these definitions, the algorithm can now be extended
to multidimensional interpolation. For this purpose, the set of
sample points must be extended from the 1-D sample point
set to a multidimensional sample-point array.

1) Choice of Sample Points in Parameter Space:The sam-
ple points in an -dimensional parameter space are now
represented by vectors . For the recursive
algorithm, the set of sample points must fall on a
completely filled grid of points. The grid does not have to be
equidistant. An example of sample locations in the parameter
space are shown in Fig. 3 for two and three parameters.

Each dimension has its own subset of parameter values, as
seen from Fig. 3, which do not change for different values of
the other parameter dimensions. In the example given, the set
of samples in the -dimension has just the four parameter
values to .

2) Algorithm Implementation:The goal is to interpolate
the function value of an arbitrary located point

. The algorithm can be divided into the fol-
lowing three steps.

Step 1) The root process starts with interpolating the point
with constant , etc., parallel to

the -axes, shown as a dashed line in Fig. 4(a).
This is a 1-D interpolation, so the algorithm
defined in (4) can be used. This step yields the
desired interpolated point

(5)

where is the set of sampling points for to
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(a) (b)

(c)

Fig. 2. Interpolation of four-pole filter response. (a) Linear. (b) Cubic spline. (c) Cauchy.

Fig. 3. Sample locations for two- and three-dimensional parameter space.

and . These are the points
marked with in Fig. 4. They may not fall on the
grid of known sample points. If that is the case, the
algorithm proceeds to Step 2 in order to determine
the points . Otherwise (the points are known), the
algorithm proceeds with Step 3.

Step 2) The algorithm calls itself for each of the unknown
points . In the example, the algorithm starts four
new child processes

(6)
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Fig. 4. Steps in recursive Cauchy method.

Fig. 5. Inverted tree representation for recursive Cauchy method.

as shown in Fig. 4(b). The ’s are sets of sample
points with a fixed value for , as seen from
Fig. 4. The interpolation is now performed along
the -axis. The routine called is exactly the routine
already used in Step 1. The algorithm is thus
recursive. Again, each subprocess checks if the set

is from known samples. If not, the algorithm
starts another instance of subprocesses in order to
interpolate the points included in using the next
higher dimension. In the example, this would be.

Step 3) In case the subprocess determines that all sample
points are known, it calculates the interpolated point

using and hands it back to the parent process,
which requested that point.

Finally, the answer for the root process (5) will be found.
The iterations of the algorithm can be represented in an

inverted tree diagram (see Fig. 5). Each process
requests the unknown sample points in its dimension from
a number of child processes and hands the result of its
interpolation to its parent. The tree is terminated (“leaves”)
with processes that interpolate from known sample points.

Adaptive sampling can only be applied in the last dimension
(the leaves), as all other samples must fall on the grid. This is
not a major limitation because most parameters show a slow
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variation and the most nonlinear parameter can be chosen last.
As mentioned before, the 1-D rational function of (1) can

also be expanded to a multidimensional rational function,
thus extending the adaptive sampling to more dimensions. An
outline of the multidimensional rational-function interpolation
is given in Section III-B.

B. Multidimensional Rational-Function Expansion

The multidimensional method can also be implemented by
a single multidimensional rational polynomial in the form

(7)

where and are ar-
bitrary polynomials of the parameters in the numerator and
denominator to , respectively. Using this approach, the
coefficients of (7) are determined directly. Sakata [10] showed
the extension into two dimension, and the general scheme is
discussed shortly here. Equation (7) can be written as

(8)

where are the mixed terms of the existing
parameters. The general form of the mixed term elements is

(9)

where is an integer function of .
Much attention has to be paid to the choice of the functions

. In this paper, the way used is to get all mixed terms of all
parameters up to a specified maximum power and
then sort by power sums . Starting with the
lowest power sum, the polynomial is built. Using this scheme,
the start of the polynomial for two dimensions is

(10)

This approach yields a linear equation system. Solving this
system directly determines the coefficients of (8) and, hence,
a closed-form and differentiable equation of the system’s
response .

However, it should be mentioned that for large dimensional
problems, it would be more efficient to split the problem
into several problems of lower order, which are then solved
recursively, as shown in Section III-A.

C. Adaptive Sampling

The multidimensional rational-function expansion may uti-
lize adaptive sampling. To do so, the function is approximated
with to different integer functions and . Using the
functions in (9) results in two different approximations:
and . The next sample is taken at the point of biggest
mismatch of the approximations and .

Fig. 6. Impedance of microstrip line as a function of�r and w=h using
multidimensional rational-function expansion.

Fig. 7. Microstrip antenna with recessed line feed.

Fig. 8. Return loss of antenna geometryp1 = 24:5 mm, p2 = 1:4 mm,
p3 = 4:2 mm, computed by a multidimensional Cauchy method model and
full EM simulation.

IV. EXAMPLES

Three examples are given here to demonstrate the inter-
polation using the multidimensional Cauchy method. All EM
simulations are performed using the Sonnetem planar EM
solver. All central processing unit (CPU) times given refer to
computations on a Hewlett-Packard K-class machine.

A. Microstrip Line Impedance

The multidimensional rational-function expansion is demon-
strated by modeling the line impedance of a microstrip line,
with respect to the line’s width-to-height ratio and the
relative dielectric constant of the substrate.

The modeling algorithm described in Section III-B returns
a closed-form rational function of .

The samples are determined by the adaptive sampling tech-
nique described above. Fig. 6 shows the model approximation
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Fig. 9. Effect of inset location on antenna’s return loss.

and the 19 adaptively taken samples. The model provides an
accuracy within 0.1% error.

B. Recessed-Line-Fed Microstrip Antenna

Heuristic models of microwave circuits are restricted to
very basic topologies such as lines, gaps, step, etc. The
multidimensional Cauchy method allows the creation of fast
and accurate models for any kind of topology as long as a
parameterized EM simulation is feasible. Here, the building
of a generic model for an recessed-line-fed microstrip antenna
in -band on a 10 mil-Rogers RT/duroid 5870 substrate (see
Fig. 7) is discussed. An accurate model for such an element
does not exist and, up to now, the design is based on simplified
cavity models [12] or an expensive search by a vast number
EM simulations, which must be repeated whenever a new
slightly modified design is requested.

The multidimensional Cauchy method overcomes these
problems. All expensive EM simulations for the microstrip
antenna are computed all at once. The problem has four
dimensions: the parameters to and the frequency .
Five parameter values per dimension are required. Hence, the
responses of samples have to be computed for a
complete filled grid of sample points. This data-acquisition
phase requires approximately 10 h of CPU time. Even though
this initial effort is quite high, it pays off as the established
model can be used for a large variety of antenna layouts
without any additional expensive computations.

The simulated geometries fall on the following grid:

mm, mm, mm, mm, mm

mm, mm, mm, mm, mm

mm, mm, mm, mm, mm

GHz, GHz, GHz, GHz, GHz

The frequency response for the model is verified at an
unsampled arbitrary geometry with mm,

mm, and mm. The response computed by full
EM simulation and by the model is shown in Fig. 8. As seen,
the model is in very good agreement with the EM simulated
result.

Fig. 10. Layout of three-pole filter showing parametersp1—p4.

1) Parameter Plot of Feed Location:Using the multidi-
mensional Cauchy method model, the antenna has been
optimized for minimal return loss at 4 GHz. The effects of
the feed location on the return loss is shown by a parameter
plot of the return loss.

The plots in Fig. 9 contain the information of 2000 fre-
quency points. Obtaining the same information using EM
simulators, one has to perform a simulation requiring 33 CPU
h. The discussed model computes the same information in less
than 4 CPU s. It can be clearly seen that the established model
enables the designer to investigate the circuits performance
with respect to dimension changes without any additional
expensive calculation.

C. Narrow-Band Three-Pole Filter

In this example, the -parameters of the response of a
planar superconductive microstrip filter, as shown in Fig. 10,
are interpolated. The five parameters are the four geometrical
parameters, namely, the gap and resonator lengths and the fre-
quency. A sample grid with five sample points per dimension
for the geometrical parameter is used.

Due to the underlying EM-simulation software, the pa-
rameter values are forced to lie on a 1.75-mil grid. The
frequency dependency is determined by adaptive sampling,
as the last level of the recursive algorithm. The frequency is
chosen because, by far, it shows the largest variation of the

-parameter.
Fig. 11 shows the interpolated response in comparison with

the exact solution, obtained by a finer meshing and finer fre-
quency stepping. A very good agreement is observed between
the interpolated response and exact solution.

The response where the multidimensional Cauchy method
is not applied is shown in Fig. 12. Due to the restrictions that
all geometrical values have to fall on the 1.75-mil grid, the pa-
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Fig. 11. InterpolatedS11 parameter using the multidimensional Cauchy
method for the parameter valuesp1 = 6:125, p2 = 16:625, p3 = 238:875,
and p4 = 238:875.

Fig. 12. S11 parameter without using the multidimensional Cauchy method,
as in Fig. 10, showing the sampled points above and below.

rameter values must be snapped to the next grid point. Fig. 12
shows the response for both rounded-up and rounded-down
values for the parameters – . In addition, the frequency
resolution is lost, as only the sampled frequencies can be
shown. As a result, the two-ripple filter response degrades to
a meaningless polygon.

1) Optimization, Monte Carlo Analysis:Using the model,
the filter has been optimized with respect to the following
specifications:

dB for

dB for GHz and GHz

The optimization by gradient search requires 19 iterations,
which corresponds to 1140 function calls. A full EM simu-
lation would require at least a CPU time of several days, as
the circuit’s response has to be repeatedly computed on a very
fine grid. The multidimensional Cauchy Method solves the
problem within 3 CPU min. The response of the optimized
filter is shown in Fig. 13.

Having the model on hand, the designer can check the
sensitivity of the model by a Monte Carlo analysis. Again,
the analysis—known to be expensive or not feasible when
EM simulation is used—can be applied with little effort using

Fig. 13. Response of optimized three-pole filter.

Fig. 14. Monte Carlo analysis of optimized three-pole filter.

the predefined model. In Fig. 14, a random variation of0.1
mil is added to all geometrical parameters.

Neither optimization nor Monte Carlo analysis can be
performed involving direct EM simulation. The number of
required points exceeds even the capabilities of current multi-
processor computers. Moreover, the majority of planar EM
solvers are not capable of handling geometries with small
variations, as all vertices must fall on a relatively rough grid.
The multidimensional Cauchy method model overcomes these
problems. After one expensive generation of an on-grid data-
base, all following computations of arbitrary circuits variations
can be obtained by the inexpensive recursive algorithm.

V. CONCLUSION

In the past, many publications showed the remarkable
reduction of computational cost when the Cauchy method
and adaptive sampling is applied to the frequency-response
interpolation.

This paper has shown that the method can be extended to
the application on multidimensional problems. This can either
be done by recursive application of the Cauchy method or by
an all-in-one multidimensional rational polynomial approach.

In doing so, similar savings of computational expenses for
multidimensional problems can be achieved, as for the 1-D
case. In this paper’s examples, the authors have shown that a
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complete and accurate numerical model of a three-pole filter
with four geometrical parameters plus frequency dependency
can be obtained.

It has also been demonstrated that the developed models
can be implemented in an optimization loop for a fast opti-
mization of microwave circuits. Moreover, the authors have
shown that the model can be utilized for an inexpensive
generation of parameter plots and Monte Carlo analysis with
the accuracy of a full EM simulation. An example has also
been given to demonstrate the concept of the multidimensional
rational-function expansion approach. Both approaches can be
combined to tackle large-dimensional problems using adaptive
sampling for several parameters at the same time.
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